Tuesday, September 6, 2022

Hatching chinook to be wild

Why tribes are pursuing a controversial salmon recovery strategy
By COLE SINANIAN
Columbia Insight
ELGIN — Rick Zollman
stood at the edge of a rectstood at the edge of a rect-
angular, concrete pool and peered into the water below. Tens of thousands of juve-
nile chinook salmon rushed toward him their speckled toward him, their speckled tening in the afternoon sun.
Zollman waved and Zollman waved and
smiled at the fish as they lept from the water to greet him, conditioned to expect food when they sense the pres
of their loyal caretaker Each of the 18 pools Each of the 18 pools -
or raceways - at North
east Oregon's Lookingglas Hatchery, outside of Elgin, holds roughly 65,000 juvenile chinooks, totaling nearly 1.5 million fish.

The fish were hatched
here in January from parents here in January from parents
collected in one of five of the region's rivers, then in spring. They'll remain
here for a year, growing and
maturing until ready for release into the wild.
Shaded by towering
lodgepole and ponderosa pines, Lookingglass Hatch pines, Lookingglass Hatch-
ery sits along Lookingglass Creek in the historic homeCreek in the historic home-
land of the Nez Perce Tribe. The Nez Perce have exclusive fishing rights to Look-
ingglass Creek, one of the ingglass Creek, one of the
tribe's traditional fishing spots. For centuries, Nez
Perce families have gath Perce families have gath
ered here to harvest salmon returning from the Pacific. The tribe uses the hatchery to restore the area's
natural population of wild chinook, in the hopes they may one day reach levels that
support consistent harvest
The hatchery dilemma In a controversial practice
known as "supplementation," Lookingglass managers take mature wild fish from the area's streams and
them at the hatchery.
them at the hatchery.
The goal is to ensure that The goal is to ensure that
the fish released from the hatchery are from the same genetic lineage as the wild stock, so they can return to spawn naturally, effectively making their offspring a part
of the wild population of the wild population. Many scientists and
conservationists have pointed to hatcheries as a contributing factor to the demise of wild salmon
stocks in the Pacific Northwest. Releasing hundreds
of millions of domesticated hatchery fish into the watershed each year allows for the
rationalization of overfishing and habitat destruction, they and habitat destruction, they
say, and adds pressure on the sam, and adds pressure on the few remaining wild fish by reducing their genetic fitness and increasing
competition for resources.
But for tribes like the Nez
But for tribes like the Nez
Perce, whose culture is inextricably bound to salmon hatcheries may be all that
prevents their traditional way of life from disappearing entirely.
To supply fishing grounds
while minimizing the while minimizing the effects of hatcheries on endangered
wild salmon, tribal-operated wild salmon, tribal-operated
hatcheries are employing hatcheries are employing
innovative but experimental methods like supplementation to restore wild fish populations in the rivers where they were lost.
not a solution, they're a tool," said Zollman, who works fo
Nez Perce fisheries but is Not a tribal member himself. "The idea is that we still have fish spawning so our grandkids can go watch them, and still be able to catch fish and have them on the table." At Lookingglass, the
spring chinook conservation spring chinook conservation
program operates for rivers program operates for rivers
in the Grande Ronde and Imnaha river systems. Lookingglass is one of
five hatcheries among the five hatcheries among the
33 operated by the Oregon 33 operated by the Oregon
Department of Fish and

Jortheast Oregon's Lookingglass Hatchery, outside of Elgin, holds roughly 65,000 juvenile chinooks, totaling nearly 1.5 million fish
"WITH
HATCHERIES,
THEY'RE NOT
A SOLUTION,
THEY'RE A
TOOL. THE
IDEA IS THAT
WE STILL HAVE
FISH SPAWNING
SO OUR
GRANDKIDS
CAN GO WATCH
THEM, AND
STILL BE ABLE
TO CATCH FISH
AND HAVE
THEM ON THE
TABLE."

- Rick Zollman, Nez
Perce, Fishenires essurces
Management

Wildlife that has a conserva tion program. Like Looking Irrigon, Umatilla and Wallowa hatcheries - each have tribal co-management.

How supplementat

 worksThe Lookingglas program uses supplementa wild fish from rivers and integrating them into hatchery broodstock - to produce the next generation of salmon. Chinook spawned at the hatchery eventually return to their natal streams as adult ing offspring that are both ing ofsspring that are both ally indistinguishable from wild-origin fish.
The National Oceanic and Atmospheric Administration regulates hatcheries that take endangered salmon popula-
tions - such as Columbia River spring chinook - for broodstock.
"For a conservation hatchery, typically we have objec-
tives or goals that are solely tives or goals that are solely to restore the wild spawn-
ing populations," said Lance ing populations," said Lance biologist. "It's a very defined program, with the intention program, with the intention

To prevent an overabunance of hatchery-reared fis on the spawning grounds which generally have greate return numbers than wild-or managers employ an elab rate system of weirs (fish raps) to maintain a healthy cosystem balance
what's referred to as

Rick Zollman checks in on a pen full of broodstock at Look ingglass Hatchery, outside of Elgin.
$\begin{array}{ll}\text { Lookingglass managers use } & \text { ical and magnetic cues that } \\ \text { the weirs to select how many } & \text { will one day guide them }\end{array}$ the weirs to select how many of each type of fish - hatchthe spawning grounds. The number of a given year's wild returns determines the number of hatchery fish allowed to reach the spawning grounds.
Lookingglass managers also use the weirs to adjust
the number of wild-origin the number of wild-origin
fish taken for broodstock fish taken for broodstock
based on that year's wild returns. During years when wild returns are low, more hatchery-origin fish - which are marked by the removal of - are collected for broodstock, so as to not interrupt the wild chinook population's recovery.
The weirs allow everything to be controlled," Zollman said. "We don't inundate the natural fish, but we don't
leave the spawning grounds leave the."
Once collected, broodstock are spawned at the hatchery and their offspring are incubated, then transferred to massive early-rearing tanks.
Once the young fish reach a few centimeters in length, they re segregated based on
the rivers their parents originated from - this prevents biological connections from being compromised.
After about a year of
maturing in the racewas maturing in the raceways,
the fish are trucked to acclithe fish are trucked to accli-
mation sites (small pens near the spawning grounds in their home rivers) where they spend their final four to six weeks before release.
It's here that fish interna
will one day guide them
home. They also lose their domestic tendencies. By this point young fish no longer
swim toward humans expectswim toward humans expecting to be fed.
In total, the fish spend 18 months at the hatchery before
Low numbers, long game
When Lookingglass
began its conservation program in 1997, each of the area's watersheds had only a
few dozen fish returning few dozen fish returning to
spawn.

At Lookingglass Creek those number
Now, hundreds of fish
return to Lookingglass Creek each year - enough Io support limited sport and
tribal fisheries. tribal fisheries.
While ye
While year-to-year
numbers fluctuate wildly numbers fluctuate wildly,
average annual returns in the nearby Lostine River now top more than 1,000 , according to data from Zollman.
Salmon had a particularly prosperous year in 2010,
when returns to the Lostine when returns to the Lostine
were close to 5,000 . Half of were close to 5,000 . Half of
2022's returns to the Lostine - which have yet to be fully counted - were wild-origin counted
fish.
Fact
Factors that affect annual fish returns beyond what the hatcheries are doing include
ocean conditions, commercial fisheries and habitat accessibility.

The success of a hatchery program depends on good
habitat and good survival conditions for the fish, jus
said. "It may take decades o get those increases from program."

The trouble with

supplementation
Supplementation epresents a shift in hatch around the turn of the entury.
But some scientists say hese programs are risky Sudies have shown tha deliberately interbreeding hatchery fish with natural-or wild populations.
Salmon are biologically linked to the rivers they come from. Raising juvenile fish in an artificial habitat can make those fish less suited to natu-
ral environments, decreasing al environments, decreasing the chances that
home to spawn.
This lack of biologica
fitness carries on to the hatch ery fishes' offspring, whic can genetically weaken the ocal wild populations when he two interbreed, accord ing to a recent report by the Washington Dep
Fish and Wildlife.
"Hatchery fish are dome
icated, and that difference s actually programmed into the genetics of the fish hemselves," said Jamie and research at the Wild Fish Conservancy, a Washing-ton-based nonprofit conser fish interact and spawn with hatchery fish, the next generation of offspring from that hatchery and wild pairing is much less likely to survive the wild.
Beyond genetic risks, onists see using hatcheri for conservation as a backward approach to wild fish recovery. Excessive hatch ery production is often cited as one of many contributing factors to the rapid decline of Pacific Northwest wild
salmon over the past century. Since the region's firs hatcheries were built in the late 1800 s, the majority of hatchery programs have operated under an agricultural model of fish produc
tion. \quad This approach relies on the sheer volume of fish produced to sustain ruin out consideration for habi tat restoration or the fishes genetic fitness, said Jack
Stanford, a retired professo and fisheries ecologist at the University of Montana.
There's this mantra out there that you can replace lost
catch because of the demise of wild fish with hatcheres," he said. "And it does no work."
The net result is the entire Pacific Northwest salmon fishery being reliant on ng to the decline of the vu ing to the decline of the v
fish it's intended to save.
"It's like we're trying to
ave this patient, but we'r standing on their throat whil

Museum-piece

fisheries'
While hatcheries may have historically used an ecologically irresponsible members of the Columbia River Plateau Tribes view hem as essential to keeping ncient traditions alive.
They see supplementa fion as necessary to not only ion, but to keeping salmon in the rivers and streams in ribal homelands that once served as sacred fishing grounds.
The lives of the indigeous people who inhabit the
lateaus and valleys of the

Columbia River Basin once completely revolved around salmon. The seasonal returns
of salmon to natal streams are integral to their cultures. "We're a salmon people," said Joe Oatman, a member of the Nez Perce Tribe and
director of the Harvest Division of its fisheries program. "Our whole identity and our whole view of the world revolve around salmon. And to be salmon people, we need to have salmon in the rivers." Construction of hydrothe 20th century brought the elimination of more than 40% of historic salmon habitat and the destruction of culturally and economically significant tribal fishing places.
This was devastating to the Nez Perce, who histor300 pounds of salmon per 300 pounds of salmon per person per year, according
to Oatman. Now a tribal member might be fortunate to catch two or three fish a year.
With

With historic fishing places either inaccessible or lacking fish, many Nez Perce
families now must travel long distances to harvest their yearly catch. The resulting economic burden forces many to make difficult decisions about whether to prioritize finances over cultural preservation.

These days, it's a really

