cileckily Eiterpris.						
cresa						
rriles						
		-miz	+		\pm	
				\%		
	5in					
	- -2.	${ }^{2}$				
	+masm					
	amfaym		asar		Mramem	
	${ }^{2+4}$					
5	5as	20	-	2tary ${ }^{\text {asemat }}$	5x masa	
				4		
	2may	momb	yom			
- -	208 ${ }^{2}$		- x^{2}			
5 ma	-	mame	$=x^{2}={ }^{2}$			
Thesmerip mant	nameema					
5	\%		\%			
ane						
2mem		,	ximmax max	9		
-		maxam	amymax	2-m		38
5. ${ }^{2}$	$=$	-	x			
mememex	-s,me	\%				
\pm	\%emem					cow
mem			-			marriage
	a	5		4 ym		
, 5	2					
0	$y^{2}=-4$					
-	mosm	-				
=						
- ${ }^{2}$						vew
-	-					
	miem					
						20x
mis					崖	
\%	$2{ }^{2} \times 2$				5 mbs	\%****
=mid	-mam					
	2amix					
2mer	\pm					cosemex
$y=$	5					coseme
5vema	-					
\pm	5		5ex		mex	\pm
-	¢T-		max		5xis	\%axamer
	2esmem					\%2ase
			atzmemex			
+5xe	- ${ }^{2}$					roartasp. onzases,
$x=$	tre	\pm	$=$		mome	GiEO. Lichermy
\%		5				
\pm	$=$		\%max			
	5					
Lemamis	-		20,			Nomen
	\% ${ }^{\text {a }}$	25s 5 Et				

