

THE EADS SHIP BAILWAY-A STEAMER IS TRANSIT.
over any inaquality of the rails which may happen to exist. The wheels are hung indepsndently-that is, each is separate from its fellows, having its axle protruding on esch side sufficiently far to furnish a proper bearing. The breaknge of any one wheel, therefore, would not affect any other wheel, and if even a dowen were to break, the great number that would be left would poseess sach an enormons surplns of strength, compared with the broken ones, that dernilment may be considered as practically impossible.

The vessels will be hauled across the Isthruus by powerfal locomotives The engines, such as have been built recently by the Baldwin Loeomotive Works for the Dom Pedro Railwny in Brazil, would do the work. The company who built them guarantee that three such engines, weighing, resdy for service, 294,000 pounds each, will hanl the maximum sized vessel at the rate of fifteen miles an hour, if neeessary, on grades up to twenty feet to the mile. The railway trsverses a suocession of valleys. In the hilly part of the Isthmus, in onder to save heary construction wcrk, it is necessary to make abrupt changes of direction, as it would be impracticable to move a rigid carriage of such great length with a vessel upon it around a sharp curre. These chnnges of direction, five in namber, are made by floating tarn-tables. These are simply great pontoons or floating docks, which are placed in a segmental basin of mnsonry or concrete. When the vessel is drawn upon the pontoon the latter rests solidly upon the circular bearers in the bottom of the basin, atability being given to it by the weight of water in it. In order to tarn the pontoon to the new direction required, the wnter is puraped out of it sufficiently to just ruise it from the foundations on which it rests. It is then,
while floating, turned about a centrnl pivot, althongh the weight does not rest upon the pivot, but entirely upon the water. When the pontoon is revolved so that the rails upon it coincide with the rails of the railway, in the new direction, the water is admitted to the pontoon and it rests again upon the circular bearers. The vessel is then hauled off the pontoon upon the railway. These turn-tables will be utilized for pessing points, or sidings, so that while the railway is virtually a single track rond, vessels may meet and pass each other. By laying radial tracks from these basina, vessels can be ran out, as on marine railways, for cleaning, painting and repairing. About $\$ 1,000$ will thus be saved to the vessel over the eost of docking in ports.

The admissible lateral motion in the journals and on the treads of the wheels is sufficient to make a curve of twenty miles radins perfectly practicnble. The curves laid down on the location of the railway are from twenty to fifty-three miles. By these curves advantage is taken of the general lines of the country and serions obstacles are avoid.d.

It is expected that the practicable speed will average eight or ten miles an hour, and it is intended to so construet the whole work, roedbed, rolling stock and other applinnces as to make this apeed perfectly safe. The whole distance is 134 miles, and it is estimnted that eighteen or twenty hours is amply sufficient to transfer the vessel from one ocean to the other.

In laying out and constructing the rondbed, the possible future enlazgement necessary for larger vessels, wider carriages and greater traffic will be provided for by building the foundations sufficiently wide to permit double tracking the railway. The docks at the termini ean also be duplicated when

