AMERICAN LOCOMOTIVES,

The United States exported 25 locomotives during the fiseal year of 1870 , and 60 during the year 1850-an increate of 140%. Several monster locomotives for freight service are is process of construction for the Now York, Pennaylvanis and Ohio railroad. They reat on six drivers and a four-wheeled truek, asd will weigh 35 tons, empty. Train men are considerably troubled by these trainn breaking in two when hauled by these powerfal consolidated engines, and the only remedy seems to be in equipping freight cars with heavient drawbarn, alisekles, and pins.
The following from Mr. R. M. Brereton, C, R., may be quoted as an authoritative Eoglish opinion of American built locomotiven:
argue that the greater duty done by the American motor is due to the better denign and the better system of working the looomotives. The American builder excels in the system of fram. ing and counterbalancing, and in the designa of crank axles, eto., so that the engine may run remarkably easy and withont jar, round sharp curves, and work not only on the light roadn, but alao diminish the wear and tear on the solid roads, and at the same time increase the effeot ive tractive force. The English engine is a very heavy affair, and is running it not only weark and tears itvelf very rapidly, but also the roadway, asel it greatly, by ita nneteadiness and jar, fatigues the drivers and firemen. I have ridden hundreds of miles on eogises in Indis, in Eng: land, in Vrance, and in the United States, and I have always found the American engise mont onay and oomfortable, but I never did the Eng: lish or the Contisental engines. It is almont imponsible to give these engines their full lanuling power, sitoply beoause the greater portion of the weight cannot be thrown off the driving wheels."

THE INFLUENCE OF A TUNING.FORK ON THE GARDEN SPIDER.

Having msde some observations on the garden spider whichare I believe new, I send a short acoount of them in the hope that they nasy be of interest to the readers of Nature.

Lavt autumn, while watehing some spider spianing their beantifal geometrical webs, it oocurred to me to try what effeet a tuning fork would have upou them. Oa sounding sn A fork and lightly touching with it any leaf or other support of the web or any portion of the web itself, I found that the spider, if at the center of the web, rapidly slew round so as to face the direction of the fork, feeling with it fore feet along which radial thread the vibratiou travela. Having become astiatied on this point, it eext darts along that thread till it reaches either the fork iteolf or a junction of two or more threads, the right one of whieh it instantly determiees as before. If the fork is not remaved when the apider has arrived it seems to have the same obarm as any fly for the spider seises it, embraees it, and runs about on the lege of the fork at often as it is made to sonnd, never seeming to leara by experience that other thinge may bazz besiden its natural foos.
If the spider is not at the enatre of the web at the time that the fork is applied, it cannot tell which way to go until it has been to the centre to anoertain which redial thread is vibrating, unless of course it should happsa to be on that partieular thread or one atretched ampporting thread in coatact with the fork.
If whes a spider has been enticed to the edge of the web, the fork is withdrawn and thet gradually beoaght near, the apider is aware of ite preseses and of its direetion, and reaphes out as far an possible in the direction of the fork, but if a mousaling fork is gradually brought near a spider that has not leen distarbed, but which is aniting as sanal is the middle of the weh, then isatead of reaching out towaris the fork the epider ipntantly drope-at the end of a thread of course. If under these oonditions the fork is made to tench any part of the web, the
spider is aware of the fact and climba the thread and reaches the fork with marvelons rapidity. The apider never leaves the centre of the web without a thread along which to travel back. If after entioing a spider out we out this thread with a pair of aciasors, the zplder noomin to be unable to get back without doing considerable damage to the web, generally gumming together the atioky parallel threads in groups of three and four.
By meann of a tuning fork a spider may bs made to eat what it would otherwine avoid. I took a fly that had been drowned in paraffine and pat it into a spider's web and then attracted the spider by toaching the fly with a fork. When the apider had come to the concianion that it was not suitable food and was leaving it, I touched the fly again. Thin had tho aame ctloct as before, and as often as the spider began to leave the fly I again touched it, and by this means compelied the apider to ont a large portion of the fly.
The few house-apiders that I have found do not neem to appreciate the tuning fork, but retreat into their hiding.places an when frightened; yet the supposed fondness of apiders for music munt aurely have nome oonnection with these obnervations, and when they oome out to linten, is it not that they cannot tell which way to proceed?

The few obeervationa that I have made are necenarily imperfect, but I send them, as they afford a method which might lead a naturalist to notice habits otherwine difficult to observe, and no to arrive at conclusions which I in my ignorance of natural hintory must leave to others. - C. V. Boys, in Nature.

THE ISTHMUS SHIP RAILWAY,

Capt. Kads is a good persuader. His remarkable acheme of a ahip railway acrose the Isth. mus of Tehuantepeo is taking a tangible shape. The Mexioan Government has made a very liberal concession, giving him the right to conatruct a railway on auch line as be may select, the work to be commenced within two yeara and completed within 12 years. He is allowed to charge 85 por cubie meter of the displacement of each vessel transported; also 815 for each passenger on the ship, and 1\% on the value of coins or precious stones carried. The Government also given him a subsidy equal to 1,000 . 000 acres of public lands, and makes other liberal oonoessions. While this will go but a little way toward the entimated oont of $\$ 75,000,000$, it will doubtless assist Capt. Eade in raising money in the United States. He denires to have our Government guarantee 6% dividend on $\$ 50,000,000$ of the ntook of the company in consideration of free trannportation of Government ships, officern and soldier, and the benefit which the proposed road will be to our com. meree. This, however, will be difficult to obtain. The projeoted road is, if built, to be about 112 miles in length, while the proposed Panama oanal will be 45 miles long; but the Tehnantepee route will save ahout 1,500 miles between New York and San Francisco over the Panams route, while the dintance from the monthe of the Misnisaippi to Cahfornia by Tehuantepec is 2,300 milen lens than by Panama. The Pranam canal and the ship railway are fairly in the lists as competitors, while the Nicaragan canal soheme is slao being urged, and if all are completed, it will be all the better for the conntry.

Machixghy yon Washise asd Scouring Wool-This is an invention of combination of mschanism for dragting the wool from the wanh. ing vontrivance up the incline to the aqueezing rollers. One of the modifications consiata of two sete of frames rammed with teeth, the rays of the teeth in one frame alternating with the rays of the teeth in the other frame, while another modification makes use of only one frame to drag up the wool, the other frame having a lifting movement to retain the wool. The frames are similar to a barrow in conntrue. tion.

THE COLOR RELATION OF METALS.

In a paper on the color relation of metals, and notably on those of copper, nickel, cobalt, iron, manganese and chrominm, lately read before the Ohemical Society, Mr. T. Bayley re. cords some remarkable relations between solutions of these metals. It appears that iron, cobalt and oopper form a natural color group for, if nolutions of their nulphates are mixed together in the proportions of twenty parts of copper, seven of iron and aix of cobalt, the result. ing liquid is free from oolor, but is gray and partially opaque. It follows from this that a mixture of any two of these elements is complementary to the third, if the above portions are maintained. Thius, a solution of cobalt (pink) is complementary to a mixture of iron and copper (bluish green), a solution of iron (yellow) to a mixtare of copper and cobalt (violet), and a solation of copper (blue) to a mixture of iron and oobalt (red). Bat, as Mr. Bayley shows, a solation of oopper is exactly complementary to the red rellection from copper, and a poliahed plate of this metal, viewed through a solution of oopper salt of a certain thickness, in silver white. As a further consequence, it follows that a mixture of iron (aeven parta) and cobalt (six parta) in identical in color with a plate of oopper. The resemblance is no striking that a silver or platinum veasel covered to the proper depth with auch a solution in indistinguiahable from oopper. There is a ourious fact regarding nickel alio worthy of attention. This metal forms nolutionn which can be expetly simulated by a mixture of iron and oopper solutiona; but thin mixture contains more iron than that which is complementary to oobalt. Nickel aolutions aro almont oomplementary to oobalt solutions, but they tranumit an excens of yellow light. Now, the atomic weight of niokel is very nearly the mean of the atomio weight of iron or copper, but it in a littlo lower-that is, nearer to iron. There is thus a perfect analogy between the atomic weights and the color pioperties in this case. This anslogy in even more goneral, for Mr. Bayley staten that in the ease of iron, cobals and copper, the mean wave length of the light absorbed is proportional to the atomio weight. The apecific elhromatic power of the metals varies, being least for copper. The apecilfic chromatic power inereases with the affinity of the metal for oxygen. Chromium forms three kinds of salts-pink salts, identios in color with the cobalt salta; blue salts, identical in color with copper salts; and green aalts, complementary to the red naltu. Manganese, in like manner, forms more than one kind of salt. The red salta of manganese are identical in color with the cobalt salta and with the red chromium salta. The ualta of chromium and manganese, according to the author, are with difficulty attainable in a state of chromatio purity. He thinks these properties of the metals lead up to aome very intereating conaid. erations.

Thyprabi Glass,-Tempered giam can be tempered in great pieces, gifted with a power of reaintance, of which its apecific lightaess, compared with heavy metala, would not have given the loast preaumption. It asn now be employed, notably in carpentry for ponts, jointa, ties and buttresses. It combines the advautages of strength and of incorruptibility, in contact with all atmospheric agents, as well as with chemical faotors, and consequently in of perpotual duration. Besides theee adrantages another is the smallness in the price of acquinition. This material is now as cheap as iron of the same weight, and as a large salo is counted on, it will not be long before the reduction of price will be below the cost of wend. No doubt many industries will profit from this tew progreas in the fabrication of glass, and it will be greatly appreciated in the household. One will see the time when the metals and wood will be replaced by glass, in a great number of implements, atensils, and objecta of diverne natura, nueh an atop-cocks, gutter-aponta, bucketa, and
oven barrela.

