WHY DO SPRINGS AND WELLS OVER ELOW:

A now theory in anawer to the above quention is bronched by Neloon W. Green in the Popular Science Mondhly for November. Mr. Green anya the overflow ia caused by "the renultant of the earth's centripetal and centritugal forees aeting impulaively upon the anbterranean water depasits, and teading to forco them into and through the natural ohannels of the earth's cruat." It is clained that while the overflow. ing of wells and springa has been acconnted for by scientints upon the supposed existence of by. drostatic presure, a more careful investigation juatifies the conclasion that auch a proposition in fallacious, allhough exceptional canean may oecur. Aristotlo and Senecs auggented the central heat of the earth an the foree which ojeratel to compel the water to seek an overflow, but this in not borne out by experiment, neither is capillary attraction a metisfactory expianation. The controveray, if any there be, is coafined to those subterranean waters of the earth which are not inflaenced by rains.
Among the many examplen cited against the hydrostatic theory, and in support of the costtrifugal and centripetal foroes, Chanutanqua lake is mentioned an heing situated on the highest land in the State of New York west of the Catakill mountains, without any adequate feeder. Yot a large mill atream innues from it: in fact, the lake is 20 miles long by two miles wide, the whole body of which in fed by spriugs bubbling up from the bottom of the lake. The whole mountain region of northern Pennayl. vania is roferred to as another good illuntrations of high springe, which are clained to be beyoud the reach of hydrostatic promiure. The White and Adirondack monutains are alao full of similar canes
It in gonerally held, aooording to M. Garnier, that "unlena thers bo a ronervoir higher than the nurface whonee we intend to bore, we can:not hope to obtain an orerflowing fountain." Inatances may be multiplied to ahow the failacy of this amumption. The Himalayas, the highest mountains in the world, pour continually out of their higheot pointa gruat cataracts and atreams, with sin abundance that would ex. haast any posaiblo reservoirs at their extreme tope. Now since thin is the highest land of the world, no higher mource is posaible, and hence the concluaion is inevitable that these grat overifown are due to mome other force than bydrostatio proanre. That gases may force water up may be ahowa to be erroneoss, for the reason that gaese do force water down whet both are anclosed by a common reociver. This, sayz Mr. Green, may be wen any day at the gas works. Bat he omita to explain the actipe of carbonic acid gas, eto. in soda fountaian, fire extinguishera, ete., which iavarisbly throw the water in any direction in which the nozze may be pointed. Mr. G. supposes in the case of water imprisoned in the rocks, that the resal! aat of the two nataral forces, ceatriputal and oentrifagal, are duplicated upon overy point of the inside aurface of the rook priams, and tende to forse the water oat when the cavity is per forated. The direction of this force is placed at $45^{\prime}$ from the direction of the forse of gravity, bat it remaine unimpaired ahould tho oponing leed in a contrary direction. Hence, if tasarres exist in roeks that lead to imprisoned waters, it woald happen that through these outlets the waters munt oertainly flow, and, if by any arts. final means, ns by broing an opening should be made between a body of onndiaed wrter and the aurface of the earth, a flowing well would roult "Ol coarse," says the writer, "it must not be underatood that this would happen if the body of water supposed were an imilated oon and sompletely unconnected with other hodirs of water through chanaela and infer. commementions hoown to exist is the variese ramificatione of the cerilh's aurface", Why shoald it not if the theory be correct! If the two natural forcee roterred to are contianions /venters.
upon a string of subterranaan rewervoifs, why should they cease to operate upon an isolater oae ! if it be secosasry in sapport of the ovntripetal and centrifugal theory to create a vat suries of subterraisan ruservoirs connected with each other, there cas be so necessity for the theory, since hydrontatic preseure can explain the phenomesa of water flowing from the tope of the highest mountaius under a similar arrange. ment. Nay, a common foree pump in the hanis. of a man can overoone the Garnier theory, and why not the immense foroes of nature?
It is trae that the oentrifugal foroe tende to throw particles from the earth, but the cestripetal forco tends to the opposito, and both being equal, the effect is the same as if weither axisted. Otherwise, it would seeth as if the rasultant of the two forces, being more power: $f \mathrm{f}$ t than sither one alone, would affeot other things in or upon the earth. There may, however, be reasouable grounds for anajending the operation of gravity or enntripetal foros, to a certaiu degres, to explaia the overflow of spriaga and wells, which eannot vasily lm explained by hydrostatic pressure, for it is certainly true that atrong and abindant overflows oceur at the tojs of mauntains sad oa high plateaus; and almitting that hydrostatie preseare causes the overflow of sjrings and welle in particular localities, it would still be necesaary to explain how water gets to these lhighest points. Mr. Green says this can best be done by his theory, in which the foree is always acting upon partially eontined water-lueds and water-channels forming the internal water-strueture of the earth's crash. The conditiona neova sary to the realization of the hest reaulta are that these water-deposits shall be moresor less imprisoned and the outleta eomparatively limited. The overflow will be continned and upward until the remultant is overoome by frietion. We are hardly prepared to aocept this theory withont further investigation, for ose resase of many, because friction does not overoums the reaultant in very deep fowing wells, while in shallower wells the water, although abuadant, does sot rise to the sarface, wheress the costrary would neen to be the case, the reaultant having less friotion to eontend againat. - Mininig and Scientide Press,

## WHAT IS DRMANDED.

The demands made apen acientifio knewlenge far exceed the supply. Although we may be said to have arrived at an advaneed stage of learniag, we undoabtedly posesan but a limited amoant when-comparison is made with the neoessities which as yet know no law. There are no many theories broached spon importast subjects that fully the major portion of the requirementa of manufacturers asi miners are the vietims of experiment. We want imporements is proceswa -not experimental improve mente, bat practical working and satisfastory proceses, capable of aulatantial aconmplishiment of the theories olaimed for them. Employers of steam sogines demant more power from the enormous quantity of fuel consumed, wate products are waiting to le utilised, streamas ant atmopherea are erying out for relint from the pollution that is being thrown into them.

It is true inventors are endesvoring tu pimvide messes of ropplying these demanis, bet Irequently fail to astialy the demand for the alaptation of new prinelples hecanse the knosl. elge of the latter are incompterte. Diseovery is gevally the basie of invention, and the grestest atilities have leen thenee obfained rather thas by the exercias of iavention apose eh haovelelge soquired. A machine fer empletely eopveri. ing heat into mechanical force is required, but so far our scientifle kapwlelje of the properties of hest has not led as up to the poist of disoer. ery upen which to baie as isvention of that lind. One iavention lesis to as inasmarable chais of isventioss, all of them mere or less improvementa, bat still inventions. The flald is iminesue, with shaslasoe of roens for is. is inmer
venters.

## HINTS ON SOUPS.

Clara Prancia gives the Pentirie Nurser an esay ot soups, from which we exinet as foliewst Itulea for Stook,-Fire poande lean ment and some oracked bones. Five quarta cold wator. It shoulit be at least halt an hour in coning to boil. Skim; add a gill of cold water anil skim again. Soason with salt and vegotables, but he careful to use both eparingly. Cover cluee and simmer four or five haurs Strain eool, and remeve fat. This will make a elear light broth.

Caramel for Coloring Broth.-For the askenf appoarance broth is anmetimes eolored. Pat a taflesposnful of batter into a nice bright sanoepan, and whes melted, add about half a peand of sugar. Stir constantly, over the firs, until it is a very rich dark browi. Hy ne means let it burn. Add a half pint of water and an even tesupoosfal of salt. let the ayrug boif untit it is very rieh and thiek, which if will be in a fow minutes. Strain and put it in small, elose ourked buttless it should be se thick that K will jast rus fruw the bottle, A fowitroje will give the neevssary color, and will not impair the fla. vor unless thes sugar has been burnt. Taphova sago, macaroni, vermicelli, yearl-barley and rice are sice sadditions to this anaber eolared froth. They should be cooked in water before being added to the soup. Grated clicese is someLimes sorved with macaroni and vermieelli soupe-to the used at diecretion.
Noolle Soap-To see gat chit a lithe sall and as mash sifted flour as if will aboorly knead well and roll down very this. Lat is dry for half an hour, then drodjo with dour and roil over and over. Shave thin alices froen the esal of the roll, shake them sut and drop them inta salted boiling water. Stir with a simmer and boil for two misutes, then turs inte a colander and dash oold water over them. Drais, and put iato boiline bruth; adid a little chopped parnley and serre at oeen
White Xoap-If eugs are plenty use the yolka of four, if scarve, take twe whele ones insisad. Thest them light asd atd a cup, of cream, of use milk, and a tesappen of melted better. When these are mizel add to thems, madasily, B pint of hot benth stirrisg all the time I (eturn to the kettle, let it cones to a boll and serve imameliately, Toe long oweking will earille the egre, Instedd of lowating the eges they can le poashed and serval is the linoth, one egit to eacligortis, alding the cream to the broth.
Potate Koup-I'vel and sliee 10 medisun aleed potatoes; ald one oniobs, a sliee of asli pork, a thalk of celery, a leaspoes of sals, and water enend to to cover. Boil antil the potatoes are very sofl. Prees through a colanileri add a quat of milk, a tableapoosful of batter, it les: opoonful ehopped persleys beil 1 pp anes is shoult he like thick ewam. ferve with eres. tons (firy brest cut into amall dismonds, fried in beiling lard and Araised), Haen is the turees and pear the arep ever them.
Revmmine Coosta A swociktonc-In Herlis an assuciation has bees formed hy heseesives of the esty. This soelely initisted last yest variose usefal mesaures. Thus, it has gjened a laberstory for examination of artides of faod (new mo mooh sidefterated), as, ciam, of utesifle uned is oweking is is directed by a ynalified dhemint. The nature and quality of the ebjects anslymel at the Central Barsas are thes fuapsateed. The chemist gives the members of the wodety a cours of lectures is pratical cheniestry, and a coskery whoul has alee bees forraed. Atadents are examined is the subjeete of otedy; deenestie esrraste ole have remained stertalis asmber'sf years (ive) is eee honesheeld (of a namber of ibs aciely sre swanded with pripes. Lat year 56 were thes rwwaled. Anether part of the soelest's operatimas eenelate is jes. auring place and werl for servante vits ite membirs.

Desces the progrese of the Orsat gerty throegh Jows, the frals of owe pelist mele ts milles is 49 sinetes.

