the winged femalo, back view; grestly magnified, as the natural size is ahown in the ahort line on the left.
The phylloxera spread in several ways. The wingless inseot is anid, by Prol. Riley, to travel over the surface from vine to vine, or beneath the ground where roots interlock; while in the winged form it may fly or be carried by the wind 15 or 20 milos, and, uniler exceptional conditions, even more. Through man's agency by oommerce in planta or cuttinga, it may be carried indefinite distances. Therofore some governments, as the Australian, Algerian, Italian and German, have prohibited the introduction of vines from infosted regions.
Signs of the disease are given by Prof. Riley as follows: "A vine attacked by phylloxera has the more fibrous roots coverod with little nodosities or swellings, and a careful examination of the swellinga during the growing seanon will disclone numerous yellowiah lice of different ages and groupa of brighter yellow egga, barely visible to the naked eye. The swellings in time rot, and the lioe settle on the larger roota. Vines that are more susceptible to the disease genorally show external signs the second year of attack, in a sickly yellowiah appearance of the foliage and in stunted growth ; while the third year they frequently perish, when on examination the lice are no longer to be found; they have left or died, and all the finer roota have decayed and wasted away." The time to make the examination is as soon as the first signs of decreasing vigor appears. It is true, at a correspondent argues on another page, that sick vines may ariso from other caune than the phylloxera, but it ahould bo looked for, and for those who are not sharp sighted, we can but offer, as we have done before, the tue of our eyes and mioroscope, to any reader who sends un suspected vines.

Intargating Experisiknts is Fegabid to Spontanmous Combuation,-E. Bing, of Riga, has experimented with different materials; wad. ding, raw flax, hemp, the waste from silk, wool and cotton spinning as well as aponge, and finally wood dust as found in any cabinet-maker's shop. They saturated with various fluids, viz., oilh, freah and in a gummy state ; turpentine, potroleum, various varnishes, etc. All the fibrous materials took fire when saturated with any of these oils or with mixtures of the same. Sponge and wood dust, on the contrary, proved to be entirely harmless. Combustion enaued moat rapidly with 17 grains of wadding and 67 grains of a utrong oil varnish, in 37 minutes; while 200 graina of wahed cotton waste, of which a portion was ataturated with 750 grains of atrong oil varnish and the remainder wrapped about it, required almost 14 hourn. These materials were placed in a well-aheltered apot and subjected to a heat of from 18° to $40^{\circ} \mathrm{C}$. silk did not flame up, but alowly charred. Small quantitien seem to take fire mooner than large.

Sxow Illusisatros.-During a recent anowstorm, in the oarly afternoon, an interenting experiment was tried in Paris, At the moment when the aky was darkened by noow, the eloctric lamps were lighted in the square of the Thentre Francais. The reflection of the light from the anow-flakes immediately dispelled the darkness and produced a very pleasing effeet. It is proposed to try a similar experiment in minty weather, and if the light can penetrate oven to the distance of 20 meter (65.6 feet), Jablochkoff lampe will be entablinhed at points where the pasaing is mont frequent.-Ler Mondes.

Fhectho-Chmprcal Action Uster Pret-NuHz-In a serien of about 50 experiments, esch of which oontinued for aperal hours, and during which presures of $100,200,300$, etc., atmnopheres were maintainel, A. Bouvet found the following laws: 1. The decomponition of water by a current is independent of its pres ane. 2 . The quantity of electricity neovesary to decompose a given weight of water is menai-
bly the ame, whatever may be the presoure. bly the asme, whatever may be the presaure. mechanical theory of heat.

THE TSTHMUS OF NARIPN CANAI.

The old problem of a canal sutting the Isthmes of Darien is now assuming new life throngh the penistent inquiry of the Fronch. The reaulta attained by the last body of French ongineers sent out to study the feasihility of the canal have been publinhed. Their report in being followed up by Fronch writers who take up the resultant benefita of the canal and adorn them with rosy colors. The latest of these views is that of the Economiste Proncaing. This journal has been figuring the sailing time between different commercial centers, which court the Chinese trade, and the computations are found to be vaatly in favor of our Eastern neaboard over England. Our Eatern merchants and manufacturora are punhing their English competitors olone to the wall in many ports of the world, and they will make haste to avail themselven of any advantages which they may find in assailing the eastern coast of Asia with their merchandise.
The French journal, to which we have alluded, gives atatistics showing the netual differencen in distances and time between voyagea from the Engliah channel to Pacific and Chinese porta, and from New York to the same pointa. The advantages are in favor of the latter, being to San Franciseo, Callao, Valparaiso and Sand wich Islands, four and a half days, or from $3 / \%$ to 43, and 81 days, or 7\%, to Shaughai. If an inthmus canal be opened, the difference for asil. ing yosels would be 24 days, or from 33% to 51 \% from New York to the four places named, and 22 f days, or 28% to Shanghai. The averago gain to New York vesels would be 2,000 miles, or 19 daya over English and French competitors. Attention is then called to the incressed use of steamern since the opening of the Suez canal. The same result would follow by the isthmus route. The difference then in favor of New York for steamers, which in now very amall, amounting to ouly one day, or from 11\% to 3\%, would, with the caual, be, to San Irancinco, 12 out of 29 days, $41 \% ;$ Callao, 12 out of 21, or 57% Valparaino, 12 out of 27 , or 44% to the Sandwioh Islands, 12 out of 35 , or 34 -an advantage of 4% on the averaye for New York, simply doubling the commercial advantages to the United States with the Pacifio,
It will be gruatly to the glory of the French ongineers and capitalints if they sucesed at Darien, where mo many commercial powen, ineluding our own government, have explored and turned back in diamay. Although, wa should dislike, on general principles, to see any foreign nation win control of any artery of commerce which will be no important to this country an the inthmus canal, atill if the projeet goes mach longer by default by our inae tivity, their can be no caunn for complaint. Perhage it would be as well to have the Prench own the canal as any other forsign power, and no long as we get the commercial henefit, perhape we can afford to let the Freuch raise the money and resp the glary.
Inos and Suscos.- Some time ago there was taken frota the ground, we forget in what locality, a metallie ingot having the loek of iron, hat, notwithatanding ita long contant with moistares, showing no thoe of oxidation, Prof J, Law: rence $\mathrm{B}_{\text {mith, }}$ who lately analyzed it, found it to be a sillicide of iros, oontaining 17% of sillicide. This compound ia so inalterable that it will remain without change in nitrie scid of L.40 dennity, or is bromine. Hydrochlarie aed affecte it somewhat. The history of the ingot is not known, bus it is thought to owe its ex. intence to gome accident in the manafacture of irone. M. Daubres, ecmmenting of this in the French Acojamy, atated that, motwithatanding every offort, it had not bees tound poeville to incorjorate more thas eight jur oeat. of silieop with iren. M, Saint-Claire Deville wat atruck with the analogy of the product in question to the aillidide of mangasese prodnced ame year
ago by M. Brunper.-Journad of Chemidty.

LIOHT AND IIM

The quention an to how life in affected by the difforent colors of the spectrum has at various times engagod attention, and plant life has apparontly beon more studied in this reapeet thas animal. Two diatinet sorien of rosearches lately dencribed to the French Acadeny seem to afford some fresh insight into the matter, and it is intereating to compare them together,
One series by M. Bert, was on planta; the other, by M. Yung, on the eqge of eertain animale, M. lert kept planta within a glasa trough inclosure, containing an alcoholie molu. tion of chloroplyl (very frequently reinwed), and expoed them thus in a good difluse light, The nolution, which was very weak, and in a very thin layer, istereepted little more than the charaoteristic region of the reil in the ajpectrum. This excladed part, then, was proved to be the indispensable part of white light, for the planta immediately onased to grow, and before lobg died. It is in this red region (as M. Timirigreff has lately showni) that the greateat reduetion of carbonie acid takes place. If red rays are kept from the leaf the plant can no looger inerease ita weight, it in reduced to oonsuming reservea previoualy accumulated, exhauste itself, and dies.
This part of the spectrum, however, though necessary, is not sufficient. Hehind red glana plants may no doubt live long thut theyget excrasively elongated and slender, and their leaves become sarrow and little colpred. This is owing to the alisence of the blue violet rays. Thus each region of the spectrum sontains parts that play an active role in the life of planta.
Now turn to animals. M. Yung has expertmented during three years on the effeet of dif. ferent spectral colon on the development of the eggen of froge (the common frog and the edible frog) of trout, and of fresh-water sasilo. It was found that violet light favored the develop. meat very remarkably ; blue light enmes next in this respeet, and is followed by yellow light and white light (which two gave nearly similar effecta). On the other hand, red and green ap: pear to be positively injurious, for it $\geqslant 4 \pi$ found imposible to get cotoplete development of the egigs in these colors. Darksess does not prevent development, bot contrary to what soive have aflirmed, retards it. Twil poles of the satne sise, and subjneted to the same phynical conditiona previous to experiment, died more quifelly of inanition when deprived of food in vielet and blae rays than in the others-London Tintes.

Eyregt or Elactaicity os Veartamle Gnowri. -During last sumsiner, Pateur, aecording to Comptes Rewles, made some interesting experimente on the effeet of electrieity on vegetable and fruit growthe. On the 4 th of August, he snclosed some viaesets in hot-beds. almont hermeticaily sealed. The grajen ripened about Oetober 10th. Grapes that hai ripened in the open air fermented in less than 48 fours. in a tempersture varying between 25° and 30° (77' to 66° V.), but thosen that ripened under glass remained suchanyed, This result, which had been predieted by Pasteur, lends strung onnfirmation to his views. Agrin, on Ialy $20 t h$ 1577, M. Celi planted three kernels of maize under eaeh of (wo bell zlasesa. The weight of the kernels, the kind of earth, and the guantity of water aupplied daily, wers equalized as Bearly as posaible. On Auguat ist, the kernela sjrouted. During two days the grow th was nearly the same under both glases. On the third day the plants in electrised air bogan to develop mors ripildy than the other. Oo Asgast 10th, the following measuremente were takes, frus the hase of the atalk to the extremity of the spper leave Plants in electriasd air, $17 \mathrm{~cm} .(6,68 / \mathrm{ia}$)) plata in onliuary aif, 8 cm . (3.is in.).

Calsponsin, for the first time since her ad. mision to the Union, whe unrepresented is the Honse of Representatives at the opening of the special masion.

