ROOM FOR INVENTION.
We frequently hear the remark that the time will soon come when the course of invention will be run; when, like Aloxander, inventive genius will weep, because there are no more worlds to conquer. The fact that iron fingers have in mo many branches of induatry beon made to perform taaks once done by bone and sinew; that electrio throbbings have outatripped the fleet measenger in business affairs, and the iron horse with food of burning coals carries the love-letter and the meal-asok, where once the out-fed country ateed galloped along the hard-beaten road. These facta are impressive and suggestive, but not convincing on the subject of an ultimate limit to inventive usefulness or inventive power. The ball of progress in rolling along has wrapped about it many a layer of ideas formed into tangible facta; but the periphery grows, and the capacity for enlargement grows with it. As the circle of knowledge widena, the illimitable space beyond still more increases, and there in both more to learn and greater ability to learn it. If the needs of man were the aole gauge of hin demands, there might well be a point at which invention, satisfied with granting all needful thinge, would be compelled to rent. But "to want" meaun both "to lack" and "to deaire;" the food and shelter and clothing sboolutely requisite develop into luxuries of palate and enthotic taste. The rude needle of bone that sewed with sinew tho boarakin cloak and made of it a definite garment, was an invention that might have nufficed in its line, had the skin-garment satistied; but demand and supply are commennurately progressive; each surpassus each, onward in the march of progrean; and now we have that household compation, the nowing machine, purring likea kitten, while bating, newing, hemming, gathering, tidily at high speed; this modern sewing machine being an legitimately the development of the bone needle, as the fashionable garment of to-day is the outgrowth of the fig lea? of Eve and the akin oovering of her non.
Our wanta have become artificial. With sueoensive generations, luxaries davelop into curtomary grants and eventually become necensities. Our condition is ameliorated, and hence our appreciation aharpened, while certain facultien have become dulfed and invention munt aupply their places or their deficiencies. Whore invention ham produced an effect, it is for invention to extend and perfect it. Thus, in every walk of life it is for cunning brain and deft fingers to effect new combinations or perfect the old, fearless of thwart or limit. In proof that with improvement criticiam becomes more keen, and demands more imperative, we have only to look about us for promising fields to engage the inventor. While the harvest of golden grain no longer falls before the clannic sickle, and the hay maker has oeseed to be a pieturesque inspir. ation for the poet-the root-crops atill demand pernonal delving and grubbing, and the ripened fruits atill call for human pickers to pluck them one by one. For the inventors who would devise a mode removing half the blosoms from a peach tres, without injuring the budn whioh lorm the next year's bearing otems, there awnita a magniffoent prizs. Ramio and other fibers atill defy the textile arh; and the gorgeoms aniline dyes fade with a summer's sun. Housohold fires, once synonyms of health and cheerfulness, are now gloomy and moxious monumenta of our heedlesaness of things sanitary. Those domestic conveniencen that ahould minister to our comfort and well-being, poison us inaidiously bat surely. Our vaunted ganlighte blecken our paint and kill our rindow planta, while in the itreet, the pipes which lead the gas destroy our shade troes. Our sewen and our drains are confounded in name and in use, and both of them are poisonous. Our chimneys breathe forth smoke which is unconsumed feel, and hesce weoteful. Our steam-boilers, with partly consumed fral, supply our angine with wet
be aupplied with oil, through faulty deaign and workmanahip) wate part of the remainder. Our honses, shod with no regard to humanity or for tractive effeet, draw wagons or cars which rattle our teeth out, on roads or raila which rattle the vehicle to pieose. The explosiven which long ago were oonstrained to throw hurtfal missiles, have but in one instance-blattingbeen employed in peaceful work; if we may except the gunpowder pile driver, the precurtor of a long line of explosive moton yot to come. For these and hundrods of other evils, inventive genius must provide the remedy; asd aa new and artificial wante arise and develop into necesaities, upon the inventor, ever in the vanguard, devolves the duty of exploring the land of the posuible and providing for the legions of the setual.

It might be said that an science falls into the ranke of knowledge, and art after art is added to the forces of man, the tield of true invention would narrow, and that of improvement, combination and application correspondingly widen, And this distinction may not perhape be im. proper to draw, nor inappropriabe to apply. Certain it is, that as observation and experiance lay down the facts, and reanon doduces therefrom the theorien and evolven from thene again the laws which govern thinge tangible and forces intangible, the plane of the inventer will rive higher and higher, and his usefulnes will never diminish. It in to him that races unborn, nations unformed, countrien unexplored, look to for their betterment and the achievement of their aubatantial welfare. Through him the antagoniam between man and man-the foul diatinctions of caste and clan-will be awept away; and better men, under better lives and higher pleannren and comforts, achieve the destiny writtes for them in the days when the roeky riba of this earth were formed.-Poly. techaic Revieno.

A PLANING MACHINE GRANITR.

The Bonton Advertiser for Jannary 9A, oontains, under the head of "Granite Planed Like Wood," an article on a new machine for planing stose rapidly, built on the principle of the woodplaving machins. The article bogina by aaying that when awiftly revolving knives were firat made to do the work of horisontal planes upon plank and board, great wonder was exproseed, and the planing machine came at onee to be the talk of town and country. We have all become used to that and see no impraeticahility in the use of nteel va. wood in the rapid diaplacement of the rough surface of the latter.
Next in order one might reasotiably expect that nome ingenious man would devise a method for the cutting of soft atone, auch as freentone, sandstone, anil the like, but that chisels or toole of any mort that could be made, would, when driven, dull guickly, and render the ojeration practically of little value. Such a plan for the ontting of marble could not be entertained, for the hard material mant be removed by well directed atrokes from a powerfal arm. The inventor of the above mentioned machine ham now shown what may be aecomplished. Dis. daining, so it were, to medalle with softer ouhatances, he selects for the test of his invear tion the hardest of all - granite, sad the hardeei granite at that-Hollowell. Kasily and simply as the aurfoee in removed from a pine board and cansed to fly off in chips, the flinty ronghness in made to leave the face of the great bloek, and only a fine powder remaiss to prove that a strange work has been dote by the ingenious application of ateel. "If there coald be made a tool that would not require conatant watehiag and very freguest aharjeaing, you might plane grasite, auil a practional aranite cutter. The inventor showed him that for is minutes his machine could run continuonely and tha tools be unigjared, and he Wia nots litule anrprised to note the amosut of work done by the maehine in that short apeoe of time. The tools cas be ohanged in a fer minutes, and the whole machine at once put inte operation.

INSTANTANEOUS PHOTOQRAPRY,

The remarkable suceets attained by Mr. F. J. Muybridgo, of San Francisoo, in the production of aceurate pietures of horses in rapid motion, has stimulated other persons in a similar direction. The process has recently been applied by Gea. Abhots, of the United Statea Fingineering Corpe, for reeording the offeets of the mont sudden and violent explosions by gunpowder and dyaanite. The General has shown that however instantaneose an explosion appears to take place, it oceupies, notwithatanding, a measurable amount of time, which ais be readily measured and the accompanying effeets aceurately recorded by this new application of the camera.
Among other experiments, Gen. Abbott amployed that inatrument to make a series of piotures of the different stages of the explosions of submarine torpodoen. In oriar to acoompliah this, acoording to the Manyfacturer and Bullder, and in onder to make aix pietures, he had a key. board constructed like that of a plano, oonsiating of soven heys. The preseure of enoh of the keys clooed a cirvuit; that of the first koy went to the torpedo and axploded it_{i} the r maining aix keys were sach connected with a fuse, which suatained by a thread the woreent of six cameras, prepared to take pietures of the explowion. Any of these keys, when totiohed ignited the fuse, which disrspted the threnil and dropped the sereen; in the latter wras a hole, pasaing before the objective of the camers, giv. ing, during that pasasge, an expoanre of which the time wat entimated to be at moet the onetwentieth of a mecond. If, new, the keys of this key-board wore rapidly played, alf the seven keys could be touched in gucoenton, is any previously determined veloelty, alvays giving first the axplosion itself, and then the expoeure of ita effects in the cameras in wuecessive periods of tenths of seconds, or more or less, as desired.
The first experiment was with the explosien of 000 pounds of dyuamite, estimated equal iv $\delta, 000$ pounde of guapowder, and the pletarse tuken at intervals of one-tenth of a second, se that all the ancoesaive pletures were tahen is not much mote than hall a second. This if not oven a very rapid suceession, as almoot nny pianist can casily play twies as many usecoseive heys in that time. The result was an explenion in the pictares of all the sacoesilive renulte, analymed and in order. Among other curious effects, the photographa ahowed that as plane horizontal force wha developed by the oxpleslon. Other experimente showed thal depth was an important facter. The torpodoee were anploded near logether, one three and the other afr foet deeps the firnt throw ap a columa of water twiee as high sa the latter. To ascertain how a toppedo sffected a hall, or broke up a ship, iwo charges of 50 pounda each were placed three feet under the bottem of s hull. The eye sow nothing bat a coufued outbarst of water, by reason of the perristence of imagee es the retine bat the photegraphie camiers whe vary mitih quicker than the aye, se provel by the aeries of photogrophs, which showed the whole manaer In which the buil yielded to the whoek, the shape and poaition of the different fragmente while flying up in the air and coming down agaia. Alf the was diatinetly pietured in the aerise of photographay atill, from the time the torpede wha fired until the pieces hod come down, only about two meonds elapeed, while in four and one-half seoonds the whier where the veseel flouted was quint agpia.

Beim a Whammis tables have letely bepa published, and show a total iocreses in the pepulation of the earth of is,000000, party Arfiag from natural gromth asd partly frote the ohowing of mew and more crall senveses.

