TITF LAMPOD.

One of the most beautiful features of the Fastern landscape is the graceful and feathery bambor. Yew jersons who have not seen it urowing in its nastive clime can get a proper ides of its graee and beauty. A road lined with them and their feathery sprays drooping above preente one of the moet besutiful avenues possible to have is a warm climate.

Hut not from its peculiar form and as an ornament alone in it an object of interest. It is one of the mast usefal plants found in the world, und the Hisdoos say "bleasingn on the hamboo." in view of its many and important unes.
A single root of this plast will develop into a large grove, if care be taken tocut dows the older stema and not let them go to seed, for as soon an they have perfeoted their seed they die down to the root like other grases. It has been known to shoot up twenty feet in hight in six weeks, and meanure ten inches around. Mr. Fortune recorls the obeervation of a growth of from 2 to 2) feet per day. The atalkn uaually attain the hight of 50 feet, and in the Indian islands often mach 70 feet and upwarls, with a diameter of 10 or 12 inches at the bottam.
There are a large number of varieties dis. tivguished by the sise, solor of the leaf, etc. Ose has a variegated leal like the strijed grass, and is quite ornamental. The color of the stem is gencrilly yellow; but the Chinese and Japanese possoss the art of changing this to black chestant, etes. The black varieties are culti. vated is the ganiens of the rich; and the Em. peror is aid to have an officer whose sole duty is to attend to the bamboos.
The ahoota nome ont of the ground nearly full simd; and the larger varieties, 4 to 6 inclies in diameter. They are cut in this young state and sates an amparagus, pickled, preserved as sweetmests, and boiled or stewed. When grown there is almost no end to the purposes which it is made to serve. The roota are carved into a great rariety of images, and furnish the fine pristed walking canes, lantern handies, and umbrells sticks "The tapering culms" (anys the Hon. \&. Wells Williams) "are used for all purposes that poles can be applied to in carrying, projelling, apporting, and measuring, for WEich their light, elaatic, tubular structure, guariled by a coat of ailicions akin, and strength. eseed by a thick neptum at each joint, most mad. seirably fita then. The pillars and prope of houses, the tramework of arnings, the ribs of mat-saiks, and the shafts of rakes, are each fur. mished by these culma. So, aloo, are fenoes and all kinds of frames, coops, and carcs, the wattles of absttis, and the ribs of umbrellas and fans. The lesves are sewed into rain-cloaks for farmers and suilors, shd thatches for covering their huts and boata, prused inte lining for tea-boxes. plaited iste immense umbrellas to screen the belater and his stall from the aun and rain, or inte coveringe for theaters and sheds.
The wood, cut inte splinte of froper sizes and forma, is woves into baskets of every shape and fancy, sewed into wisdow-curtaiay and doorsoreens, plaited inte awninga and ooverings for teo-chests or aggar coese and twisted into oa Hes. The, shavings sed curled threads and softer things in steffing, pullows; while other firte supply the bed for aleoping, the chopaticks the browis for sweeping. The mattrese to lie spone, the chair to sit upous, the table to oat ose, the food to sat, and the fuel to oovk it with, are also derivable from the caspeeter his foot-mesasures the farmer fow the caspeeter his foot-mesaures, the farmer his whe pjes, irrigating wheels, and straw-rakes, the gropes hia gill and pint cupm, and the mandarim lis drowied instrument of pasiahment.
The joper to orite ese, the book to stndy frosis, the peecil to write with, the cup to tody
the pancits, and the covering of the latticewindow instead of glass, are all indebted to this grass in their manufacture. The shaft of the soldier's apear, and oftentimes the spear altogether; the plectrum for playing the lute, the reed in the native organ, the skewer to fasten the hair, the hat to screen the head, the backet to draw the water, and the easy-chair to lounge on, besides hird-cages, crab-nets, fish-ins-poles, sumpitans or shooting tubes, flutes, tifes, etc., etc., are among the things furnished from this plant, whose beanty when growing is conmeneurate to its usefulness when cut down. A score or two of hamboo-poles for joists and rafters, 50 fathoms of rattan ropes, with plenty of palm leaves and bamboo matting for roof and sides, supply material for a common dwelling. Its cost ia about five dollars. The decks, masta, yards, and framework of the mat-wails of the amall boats of the islanders in the archipelago are all mare or less made of this useful plant. Throughout the south of Asia it enters into the daily life of the people in their domestic economy more than anything else, or than any other one thing doen in any part of the world. The Japanese supply us with fane neatly formed, ribs and handle, from a single liranch of bamboo, and oovered with paper made from mulberry bark, and their skill is shown also in the exquisite covering of tine bamboo threals woven around cupn and sancers."
In Burmah the bamboo in so extensively used that large cities are compoed almoat entirely of it
The planting generally takes place in the spring or autumn, and requiren very little care. It is always propagated by auckers, which are deposited in pits 18 inches or two feet deep. The culture varies acoording to the soil, expoume and variety of the plant. It generally grows in a sandy or alluvial soil, which the roota can eaxily penetrate. According to the vigor of the young root the shoota will be more or leas numerous. They are destroyed at an early age during three nuecossive years, and those spring. ing in the fourth resemble the parent stem. It requiron 30 years or more to reach the blossoming period, when the plant produces a profuse fuantity of meed.
It is quite certain that this valaable plant could be succeasfully grown in many parts of our country, It is found in abundance at Yokohama and Yedo, where snow falls a foot deep and ice forms an inch and one-half thick. The introduction of this plant furnishes a mont laudable field for enterprise, and which will undoubtedly meet with a due reward-Pacific Rural Press.

Mink is Thesparamonms-In Fragebirge, in Saxony, where the cold water system in carried out in large dairies, an apparently effectual plas has been hit upot for preventing the milk "turning" suddenly in tempentuous weather. A thin iron wire chain is jassed through the thilk jans, the ends of which are kept constantly in the cold water. Dr. Fleischman, of Haden, testifien to the practicability of this method, for, he oberves, authorities on the mabject maintain that milk is leas senaitive to the electricity of the air than to the tempera ture that surrounds it more immediately. The fact that milk kept in enamelled or tinned ves. mels is less lisble to tarn sour in hot weather apeaks well for this new theory.

As Immesar Locomotivg-An immense locomotire has recently been built at Philadel phis for the Mexican and Southern Pacific railta tons engine weighs withis a fraction of (two-wheel) track. The sheels, and a pony (two-wheel) truck. The weight is so great that will western railroads, over which it must pasa, will not permit it to go over bridges, as it will It puased over all the brided over in sections. vanis road withoat heing diamantled Pennsyl
Sexatos Astuart,
Senator Katos, of Hartiond, a tarland, sent to es pounds. Whereupon the former state four inches out of the sea - Gruphic. State rose

BTOPLA8M.

Among the recent discoveries in science, none perhape will prove of more utility to man than those relating to bioplasm, because they throw light on physiological questions, particularly those concerning the construction and nutrition of the body and the causes of disease. It was formerly supposed that our bodies were alive from top to toe, inside and out; but this is found to be a mistake. Only about one-fifth part is alive; the rest is formed materinl. Everybody knows that a tree may become so hollow that only a shell is left; yet the tree may grow and mature bads and leaven and fruit. It is because the outside of the tree-the barkis alive; the wood is non-living; it is simply formed material. Now the body is not like the tree-alive only on the outaide; but theliving portion and the formed material exist togother in every part-in every tinsue, organ and ves$\stackrel{s}{\mathrm{~s}} \mathrm{~A}$.
A slight abrasion of the cuticle, or the rupture of a cell, is followed by particles of fluid which were formerly overlooked as of no account. But the microscope has revealed to us that thin apparently uselens, insignificant ooze in the vital, living part of the body ; it is bioplaem.
This is the mechanio, the akilled artint, that conntructa the cells, builds the organa, and perhapa, under the direetion of a higher power, adapts each part to one harmonioun whole.
For the last 15 years, certain English and German physiologists have spent much time with the microncope, watching this littlo work. man . They have neen it forming tisuse, musclo and nerve, changing food into blood, making the necretions; and, as parts of the body became worn and effete, silently diaintegrating and utilixing them, or removing the neoless parta from the body.
The firat decided knowledge of bioplasm came by aceident (if finding a thing we are searohing for can be called aocident ; is it not rather revelation 7), by ascertaining that when a piece of live tinsue is immersed in a solution of car. mine the bioplanmis atained, and the formed material is not stained. This discovery has enabled observers to find and wateh this little workman, while busy in construeting every part of the body.
Bioplasm is the brilder not only of the body, but of all animala and planta. To it every organized form, whother animal or vegotable, owes its formation and growth.
Bioplaam is a clear, colorless fluid, like thin mucus. Only microscopes of the highest power are of use in atudying the substance; for the largest normal masses are not one-thouanadth of an inch in diameter; but auch micronoopes fail to detect in it the least nign of urganization. Yet this apparently unorganised substance is the cause of all organization. It is a medium through which dead inorganic matter becomes living, organized.-Journal of Chemidtry.

Complessing the Bulk of Flour-A French chemist some few yearn ago conceived the idea that it would be practioable to comprese flour so as to diminish the beflk and yet not injure its quality. An experiment was acoordingly made. Flour subjected to a hydraulic prosoure of 360 tons was roduced in volume mors than 24\%. On close examination it was found to poesens all the qualities it had, previonsly to its violent treatment. It was then put into sine boxes and aealed up. At the same time other tlour manufactured from the anme wheat, but not compressed, was sealed up. About three month after several, boxes containing both kinds of flour were opened and examined. The prosed wan pronounced to be the bert. Twelve months after this, another examination took place, and with the aame reanlt. The The prested flour maded into losves and baked. The prested flour made the best brosd. In another year the boxes were opened and ex. amined, and while the loose floar showed
moldinesa, the preased was aweot, and retsined all its qualitios Mressed into bread the asme difference was observable.

