BCENES IN THK HIGH SIERHA.
The following intersating article on ghaciers, by J, G. Lemmon, is taken from the columns of the Miving and Scientific Pres:
olactais ASD theik wohk.
Nowhere ela in California are glaciers more fully represented than here around the bases of this Lyell gromp of half a dozen peaks. It is not wo surprising that the much loftier Whitney group to the nouth, nor the great domes of Dana and Gibles northward, scarcely retain an active glacier, when we consider the character of their rock, reddish porphyry, greenstone and alates, all good alsorbants of solar rays. The cold, gray granite and ailvery quarta of Lyell, alded to the interior location of the group, condense the moisture out of the over-blowing winds for a longer jeriod of the year, to fall in copious showers of anow on their plateaus, then to crystallive to nerv, soon hardening to fields of ice, called Mers de Glace, from whence glaciers emerge, griading their way to the plain.

mikt tie yacte, thes turn ougois.

These Mers de Qlace are ribbed from upper to lower side with hanl nnow, the lowent end the largeat between each ridge, in the warmest hoars of summer days, there flows the daily melt of show, filling the cracks that occur always in a masar of iee apon every change of temperature. Down each canyon of every peak, where favored by shade, flows a frowen river, a glacier. On ita haik, regularly distributed, are rocks of all nisus, ome partly covered with the ridges of seov. These glaciers move slowly down the canyons, which they evactly fill, to the level of the melting point at the prosent time in this region, at an elevation of about 11,500 feet. Arrived at the melting line the glacier abruptly terminates in a sheer precipice, semi-circular in outline Of frum its elge, one after asother, of high priled rocks, a morsine forming a curved row of high piled roeks, a moraine. These moraines are often one to two miles long in their sweeping earve and 50 feet high.
Following down the ravine, it is found to be smooth on the bottom and aileo, with no sharp anglas is its evarsos nor yet the short bonds pe-
enliar to $\mathbf{w a t e r}$ coures enliar to water coureas. At intervals, deep,
rouad or oval lakes are found in or near center of the ravine.
At every change of level, that is, every precipioe down which this ravine-maker continues, Just over the brow there is fousd a moraine.
Varther on, when the plain is reached, the ravine joins with others to form a deep, narrow
valley, strangely valley, strangely repular in contour, no sharp
angles or beads, but at a few points carving angle or or bends, but at a fow pointa corving
gracefully from side to side gracefully from side to aide, always bending
avay frum a tribstary, never tomenda often do river.

THE 0Lato-agubors meoch.

Before we sttempt to isterjuet these phenomena, let se recall the glacio-aqueous epoch
of the world's history, and note the conts of the world'y history, and note the contigura.
tion given to our globe by the univeral tion given to our globe by the universal ive
mausle. The water of the earth then flowed at an elevation far above the tops of the prowent thon of the earth'y slemente took plosiensa. tion of the oarth's slemente took place, the Faters were gradually drawz off isto preparing ovesas, st the same time ridges or undulating the jreseat meantais chapins, with their com. plement of material, mow remeved.
As the ses, with its imumenes blocka of ios, drives alvatt by wiad and tide, receded, the iselerge bergat to tonch the earth, receded, the ance the work of grinding and denading com-
menced. While age upous age elapmed, lower menced. While age upon age elapped, lower and lower aank the icy ses, and its ioe Hocks beat hander and harder upou the rila The
weakest forned rock gave wray liret, and, it may
be, that betwoen now tow cring peatas there ouce existed much higher, but easier denuded rocks. At length the great icy sea receded until it became fenced into basina by the appearing mountain chains. In the weakest placen channelo were formed, and as differencee of level oecarred, as renpecta the basins, the resistance of the sierra barriers caused tremendona preapure upon the siden of thene channels, and the ice blocks squeexing through, often wrenched the toughest rocks from their ledges and hurled them upon the distant plain. Other rocks suffered the loss of crowns and angles and remain today as domes or bosses upon the flanks of the mountains, notably in the region of Yosemite, where they may be counted by the acore, their scratched and polished nurfacen recording at once the hight, strength, and direction of the ioe currenta.
At last the glacionqueous epoch was ended. The waten were gathered into their future home, the ocean. The dry land appeared, strewn with debris for hundreds and thousand of miles on each nide of the mountain chains, While a warm atmosphere crept from the plaina by degrees up the mountains, clothing them with vegetation.
Next inceceded the wonderful phenomena of

oLacizas,

At first glaciers were developed on a ncale so grand as to be scarcely conceived of now. Their work is denuding mountain ranges and sharpening domes into pinuscles, an did their parent, the icy nea, but they toil in a very dif. ferent manner, alow an the cyeles of ages, nilent an the mold of the tomb. Their power is equal to the dentruction of the highest mountains of the globe, and to the furrowing of the deepent Yonemiten of the plateaus.
If ALL heins with the mers de glack.
These masses of ioe, at first, stranded upon plateans, afterwaril formed from snow falling in favoring localities, are fixed to the earth, in winter, thoughout their extent, by freezing. Certain points of greatest cold are developed, coinciding probably with the lowest places. At these points the rockn are clasped firmly by the ice and form a fulcrum for dynamio movements, which will be examined soon.
First, let it be remembered that ice expands when forming, about one-rinth of itn volume.
Second, when crushed at a temperature below 28' it re-congeals, over and over again.
Thind, that the force of ice-expansion is one of the most powerfal known, utterly irresistible
Now from the point of greatest cold under an iee field, this fulorum firmly clasped, the ice expands by congealing, thawing, crushing and rogelation, and premed in every direction, wrenching off and taking the contiguous rockn with it, and rasping them upon those left in the matrix.
The reeult is a npreading outward and upward of the mass of ice and consequently the excavating of the crater-like amphitheaten that are lound, some of them now empty, ot
the sides of the mountains. This accounts alo, the sides of the mountains. This accounts almo,
for the holes along the glacier's track, once ice for the holes along the glacier'a track, once ice-
wotnba now filled with water-forming. olacikes at wonk.
The spper edge of this powerful excavator rocks and earth, causing them to undermining lack, to be carried slowly down the frozen river as seen.
When glaciens are in operation on both material between, and thus remove all the material between, and thus isolated peaks are
formed at the sile. The atratest
The greatest amount of pressure will be auc onesfal in the direetion of leant reaistance, hence the final dowaward flow of the frosen river.

olacher lakea,

The Molur operandi of lake-forming is so in apropos. Anywhere that ice cotail may be
that a platean or mownere that ice forms upon a ting a basin may commence, no soon as the con-
ditions are favorable ditions are favorable, i e, frequent thawing
and freczings, which, as ahown, are attended by expansion, cruahing of ice and regelation, the latter of course attended with renewed ex. pansion. The fulcrim or fixed point would change from side to side of the bottom seeking the lowest place, from season to season, or rather from age to age. The result would be the scooping out of a crater of more or less depth, stopped only by the condition of unchanged, low temperature renehed at the bottom, generally several feet. When a change to warmer temperature occurs (which rise will soon show is sudden, and by several dogrees at once), the ice is melted, and the iee-womb or fountain, becomes a deep clear glacier lake, or often, if in loose soil easily drained, remains empty.
These lakes distributed along a ravine, ahow where glaciens had their origin, or where por tions of a flowing atream fastened on the bottom, for a perjod, and proceeded to digging wells upon the most gigantic scalo, and with the most powerful yet nimple of mechanical agenta, ice-expaasion.
The warmth of the atmosphere in a distinet stratum at the melting limit, caumes an abrupt termination of the glacier, while its flow being unhindered in the center, is faster there and causen the ontward curve to its front, and this rain-bow curve determines the ahape of the moraine of rocks dropped from ita brow, added to those disgorged from ita mouth below.
The regularity of form of the glacier bed results from the power of ice to remove obstruc. tions, like an immense furrowing flow, and ite graceful curves away from the entering tributary glacier shows by the degree of deflection the size of the tributary-a phenomenon never exhibited by water currenta.
Trains of rooks often seen, longitadinally dieposed upon a glacier, show the union of two or more stich tributaries. Their rocks doponited upon the terminal mornine form nodules or heaps in the latter. When left in witu by the sudden melting of the glacier, they form medial moraines ; while those rooks carried outward to the side of the glacier form the third kind, lateral moraines.
Terminal moraines being found deposited at the brow of every precipice in the glacier's course, prove that the heat of the atmosphere han incruased by intervals of several degrues at a time, not gradually-a most important deduction from the atudy of glaciers, bearing upon the subject of climatology, the sudden withdrawal and introduction of difforent species of animals, and plants, eta. If the inoruase of temperature waa gradual no terminal mornine of immense size as now seen, would be formed, but the rooks would be acattered along the track of the receding glacier.
The few rooks found on the back of a glacier, ite very slow movement, the bottom of it ouly moving in summer, the swiftest recarded motion being a Swias glacier that only traveled 4,400 feet in nine year, togather with the often, immenaehight of the terminal morinines, 50 feet or more, all prove the neocnity of vaat periods of time required for their formation.
Finally the long, deep, glacier carred valleys, like the famoun Yobemite, prove the prevalence of glaciers of prodigous aize and power, plow. ing the plateans of the middle region of the Sierra, down to a low point near the foothills, the melting line being met at their mouths at an elevation of only about 3,000 or 4,000 feet.
Chimate meooming wargib.

From this brief atudy of glaciers may be deduced a theory of the positive increase of the earth's atmosphere an the agos have rolled by; an increase which han advanoed tho melting point- $33^{\circ} \mathrm{Fah}$,-upthe 8 ierra, $7,000 \mathrm{or} 9,000$ feet since the day of the great glaciers. At that period, such valleya as Sierra and its sisters, now decorating the flanks of the Sierra porth and south, were either lakes imprisoned with ice, or complete ice-wombs, the souree of gle. siers whose moraines have been acattered since by floods from higher baains as their contente were feed; while the great valley of Callifornis,
and the great basin of Nevada were cold, freel

